Nuclear Rheumatology?

An initial investigation into use of simple, low-cost detectors for quantification and monitoring of RA disease progression.

Josh Knowland

Objective

Use GATE Monte Carlo simulations to show the potential efficacy of simple, low-cost topical detectors for quantification and monitoring of RA disease progression.

> Geant4 Application for Emission Tomography opengatecollaboration.org

Anatomography

BodyParts3

BodyParts 3D, Copyright 2008 Life Science Integrated Database Center licensed by CC Display - Inheritance 2.1 Japan

Topical Sensor Design

Existing FDA listed uptake probe consisting of a single 3x3x3 mm BGO crystal and silicon photomultiplier.

No shielding or collimation – means omnidirectional detection of localized uptake.

Generates a time-activity curve with 1-second resolution.

Methods

We used an anthropomorphic model of the arm and realistic uptake values² for two different radiotracers.

^{99m}Tc-diphosphonate (^{99m}Tc-MDP) ^{99m}Tc-Methotrexate (^{99m}Tc-MTX)

² Rasheed R. Tc99m Methotrexate (MTX): A Novel Complex for Imaging of Rheumatoid Arthritis (RA): First Clinical Trials. General Medicine: Open Access. 2015.

Methods

All simulations used a nominal injected dose of 10mCi. Specific uptake was modeled as a percentage of injected dose.

	RA Diagnosis	Healthy
99mTc-MDP Synovial	2.00%	0.68%
99mTc-MDP Background	6.80%	6.80%
99mTc-MTX Synovial	2.50%	0.03%
99mTc-MTX Background	3.20%	3.20%

Results – Disease State

Difference in simulated detector output between diseased and healthy wrist:

-52.3% for ^{99m}Tc-MDP -89.8% for ^{99m}Tc-MTX

^{99m}Tc-MTX is 1.7x more sensitive to disease state.

Results - Placement

Placement can lead to variability in detector output.

We simulated ±15mm variability in detector placement (distal/proximal).

Within ±5mm, output error is less than 5%.

May need a detector placement guide for serial human use.

Discussion

Simple topical detectors may be a useful tool to quantify disease state.

Might be possible to improve early diagnosis using baseline uptake measurements.

Treatment response could be tracked using periodic low-dose measurements.

Future Work

Investigate additional target joints, radiotracers and disease stages.

Additional molecular targets – T-cells, leukocytes, antibodies, apoptosis

Longitudinal human studies to follow treatment.

Future Work

Because the detectors provide time-activity curves, could the **kinetics** of tracer uptake be predictive of RA disease progression?

Uptake Time

Thank You

Josh Knowland Ron Lattanze Samantha Lipman, PhD

www.lucernodynamics.com

