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Abstract— Objective: Injected dose infiltration can negatively
impact quantitative evaluation of Positron Emission Tomog-
raphy (PET) data by leading to inaccurate calculation of
Standardized Uptake Value (SUV) measurements and limiting
bioavailability of the tracer in the patient. Recently developed
topical gamma scintillation sensors provide a way to monitor
Time Activity Curves (TACs) and determine the presence of
activity remaining at the injection site after injection. However,
TAC analysis and visual inspection by physician of static PET
images differ in many cases which has been a recent research
concern. In this work, a deep learning (DL) based classification
was implemented to study whether this approach can be a viable
solution to classify good/infiltrated data. Method: A supervised
machine learning technique was adopted and TACs obtained
from the sensors were fed as input to a neural network. The
network was trained to classify two classes of data i.e. good
quality injections and poor quality injections. The performance
of the network was tested on the basis of 3-fold cross-validation.
Result: The network could label the good injection data (94.58%
data) with around ≈ 99% accuracy and infiltrated injection
data (5.42% data) with ≈ 87% accuracy with an overall
accuracy of ≈ 98%. Conclusion: The objective of this work
was to examine the feasibility of implementing a DL approach
to PET dose injection quality monitoring.

I. INTRODUCTION

Positron Emission Tomography (PET) using 18-fluoro-2-
deoxy-D-glucose (FDG) is widely used for disease staging
and evaluate treatment response. The standardized uptake
value (SUV) is a semi-quantitative parameter used to diag-
nostically assess images and perform evaluation of treatment
strategies. SUV is a measure of normalization of the activity
concentrations in a volume of interest (VOI) determined from
PET images, and normalized by decay-corrected injected
dose and the patient’s body weight. The dependence of the
SUV calculation on injected dose means that injection infil-
tration (retention of injected dose at the site of injection) can
impact calculation of SUVs. This results in overestimation
of the true injected dose and underestimation of the SUV
which may impact the evaluation of treatment response. Dose
infiltration also limits the bioavailability of the radiotracer
and may prevent visualization of target disease regions.

Antecubital fossa is the most commonly used injection
site which usually lies outside the Field of View (FOV) of
PET imaging as the arms are often raised above head to
avoid artifacts [1]. In such cases, it is difficult to trace the
presence of dose infiltration, and in what way the infiltration
affected the PET data. Several research works have focused
on identifying the extravasated dose. Osman et al. studied the
frequency and impact of dose infiltration [2] and reported
that, in 10.5% cases, infiltration was observed which led
to underestimation of SUV by an average of 11.7% in

liver and 9.3% in mediastinum. In other research works,
different approaches have been proposed to correct SUV
measurement based on phantom experiment [3], by Monte
Carlo (MC) simulation [4] etc. However, a very recent
addition to this area has been the introduction of scintillation
sensors (Lucerno Dynamics, LLC, Morrisville, NC, USA) for
injection quality monitoring. Time Activity Curves (TACs)
during the uptake period are obtained from two sensors
attached to both arms of the patient. TACs generated from the
sensors on the injection arm and the opposite arm (referred to
as the control arm) correspond to dose activity and baseline
activity respectively. TAC analysis helps to determine if
residual activity is observed at the injectdion site or not and
can provide guidance on the severity of the impact on the
injecdtion as illustrated in Fig. 1. Fig. 1 shows TACs for
good and low quality injections. In an ideal case, classified
as a non-infiltration case, the TAC will indicate a fast rise
in counts corresponding to the injection bolus and then
quickly fall back to baseline shortly after the bolus has passed
(Fig.1a). For the TACs classified as possible infiltration cases,
during the whole uptake period and even at the end of the
uptake period, activity remains at the injection site (Fig. 1b
and 1c).

Use of these sensors have been studied in several research
works to help identifying poor injection quality, especially
for the cases, where injection site is out of Field-of-View
(FOV). In 2016, Williams et al. first demonstrated the
application and feasibility of these sensors to identify and
characterize infiltrations [1]. Ratio of injection arm TAC area
to the control arm TAC area has been used as a threshold for
detection. The study was conducted on 10 different patient
cases and in 4 cases, infiltration was observed from PET data.
However, with the sensor based approach, they could identify
3 cases of infiltration and the possible reasons were addressed
as low intensity and volume of the injection spot. In another
different study [5], it has been observed that infiltration
identification by TAC analysis varied from physician’s review
on the basis of visual inspection of static PET images. It
was found that, physician identified 15 cases of infiltration
whereas, analysis based on sensor data identified 22 cases of
infiltration identification out of 40 cases, leading to discrep-
ancies in the results for 7 infiltration cases. Inconsistency
observed with the existing approaches thus has been the
motivation of the current study. The purpose of this work
was to deploy a Deep Learning (DL) approach to perform
the training of a neural network (NN) based on available
dataset of injecdtions classified as non-infiltrated and those
classifed as infiltrated data so that the trained NN can be



used later to classify injection data. The present form of the
work implements the NN and studies the feasibility of the
NN to serve as a sound classification tool.

II. MATERIALS AND METHODS

A. Deep Neural Network

Convolution Neural Network (CNN), which is a widely
used DL network for classification purpose, has been used
in this work to perform injection classification. LeNet5 [6],
AlexNet [7], VGGNet [8], GoogleNet [9], ResNet [10] are
different CNNs introduced to date and have been found to
perform extraordinarily well. In this literature, a simple DL
classification with slightly modified LeNET5 CNN has been
performed on the TACs obtained from sensors to classify
different levels of infiltrations.

TABLE I: Table of No. of Neurons in Layers

Layer No. of Neurons

Input 600
1st Conv.Layer 16× 600

1st Max-Pooling Layer 16× 300
2nd Conv. Layer 32× 300

2nd Max-Pooling Layer 32× 150
3rd Conv. Layer 64× 150

3rd Max-Pooling Layer 64× 75
1st Fully Connected Layer 256
2nd Fully Connected Layer 64

2nd Fully Connected Layer/Output 2

LeNet5 is a 7 layer Convolutional Neural Network (CNN)
proposed by Lecun et. al [6]. The network consisted of 2
convolutional layers followed by two subsampling/pooling
layers. The convolution-pooling layers are followed by 2 FC
layers. In this work, a similar architecture like LeNet5 has
been implemented. The original network has been designed
to feed 2D image data as input whereas, in this work, the
network has been designed to operate on 1D injection data.
1D CNN has previously been used in many research works,
e.g. for ECG (Electrocardiogram) signal classification [11]
in the field of medical research. The model is depicted in
fig. 2. A brief description of all the layers and functions are
as follows:

1) Convolutional Layer: In the network used, 1 dimen-
sional convolution has been performed in all the convolu-
tional layers. Bias and weight values have been initialized
with a constant value 0.1 and normal function with standard
deviation 0.1 respectively. Filter kernel was set to 5.

2) Pooling Layer: Three pooling layers after each con-
volutional layers have been used to merge similar features
into one and allow invariance to small shifts in the previous
layer [12]. 1D max pooling operation has been performed
with window size and stride of 2 for all the pooling layers.

3) Fully Connected Layer: Three fully connected layers
followed by convolutional layers have been used with similar
weight and bias initialization as convolutional layers.

4) Activation and Loss Function: ReLU (Rectified Linear
Unit) [13] activation function has been used at the end of
each convolution and FC layers except for the last FC layer.

Softmax Cross-entropy with Adam Optimizer [14] has been
used to train the network.

5) Regularization: To reduce over-fitting, a dropout reg-
ularization has been implemented in the first two FC layers
with a 0.8 probability of neurons being kept.

A learning rate of 0.0001 has been found to be opti-
mum learning rate for the training dataset. All the hyper-
parameters have been tuned by means of grid searching. The
size and number of filter/kernels/feature maps for each layers
have been mentioned in table I.

B. Experimental Setup & Implementation

The DL network has been implemented in python with
Tensorflow library [15]. Data has been labelled first and then
standardized before feeding into the network. The data was
split into training and test dataset. The details are included
in following subsections.

1) Preprocessing & Standardization: The injection data
has been collected from University of Tennessee Medical
Center database of injection monitoring sensor readings. The
data consists of TACs from injection and control arms. The
absolute difference between two TACs has been considered
as input to the neural network. For each injection data, the
first and last five minutes of TACs were incorporated together
to feed into the NN. Thus, each input data consisted of
10 minutes i.e. 600 seconds of data with a sampling time
of 1 seconds. The training data was then standardized by
subtracting the mean and scaling to unit variance. Mean and
standard deviation from training data has been used to be
perform the standardization on test data.

2) Labeling: The dataset was divided into two categories:
infiltrated and non-infiltrated based on the scores provided
by the software in numeric range from −∞ to +∞. In
general, negative scores were considered as non-infiltrated
cases whereas positive scored data were counted as small to
moderate and severe infiltration. In total 650 patient data was
available, out of which 618 data (95.08%) were labeled as
non-infiltrated and 32 data (4.92%) as infiltrated. The dataset
was further split into training and test dataset. Table II shows
the no. of data in each class of each set.

TABLE II: Table of Data Statistics

Dataset Non-Infiltrated Infiltrated Total

Train 436 (94.58%) 25 (5.42%) 461
Test 182 (96.3%) 7 (3.7%) 189

Overall 618 (95.08%) 32 (4.92%) 650

III. RESULTS

The training performance was evaluated by means of
3-fold cross-validation (CV) [16]. The whole dataset was
divided into 3 sets of data. 1 set was used as validation/test
data and remaining 2 sets of data were used as training data
each time. The neural network was trained for 300 epochs.
Accuracy, specificity, sensitivity, PPV(Predictive Positive



(a) Good injection (b) Moderate infiltration (c) Severe infiltration

Fig. 1: Different Cases of Infiltrations: (a) Good injection quality with a fast rising uptake which fell back to the baseline
shortly (b) Injection classifed as a moderate infiltration where a considerable amount of activity remained at the end of the
uptake period (c) Severe Infiltration where significant amount of activity remained comparing to the baseline

Fig. 2: Deep 1D Convolutional Neural Network used in training the TACs with 3 convolution-maxpooling layers followed
by 3 fully connected layers

TABLE III: Table of Confusion Matrix & Accuracy for 3-fold Cross-Validation

Dataset Ground Truth Confusion Matrix Total Data Accuracy Specificity Sensitivity PPV NPVNon-infiltrated Infiltrated

Cross-Validation
Set 1

Non-Infiltrated 137 4 141
95.45% 97.16% 76.92% 71.43% 97.86%Infiltrated 3 10 13

Cross-Validation
Set 2

Non-Infiltrated 146 1 147
98.70% 99.32% 85.71% 85.71% 99.32%Infiltrated 1 6 7

Cross-Validation
Set 3

Non-Infiltrated 148 0 148
100% 100% 100% 100% 100%Infiltrated 0 5 5

Average 98.05% 98.83% 87.36% 85.71% 99.06%

Test
Dataset

Non-Infiltrated 181 1 182
99.47% 99.45% 100% 87.5% 100%Infiltrated 0 7 7

Value) and NPV(Predictive Negative Value) were measured
as follows to perform the evaluation:

Accuracy =
TP + TN

TP + FN + TN + FP
(1)

Specificity =
TN

TN + FP
(2)

Sensitivity =
TP

TP + FN
(3)

PPV =
TP

TP + FP
(4)

NPV =
TN

TN + FN
(5)

where, TP, TN, FP, FN denotes true positive, true negative,
false positive and false negative values respectively. In this
work, identifying injections classified as infiltrations has been
regarded as positive and those classified as non-filtration as
negative. Specificity and sensitivity provided the accuracy of
identifying true negative (good quality, non-infiltration) and
true positive (low quality, infiltration) respectively. PPV and
NPV showed the proportion of positive and negative results.
Table III includes the confusion matrices and evaluation pa-
rameters and fig. 3 and fig. 4 depicts their graphical represen-



Fig. 3: (a) Train and test accuracy at each epoch during the first cross-validation iteration (b) Graphical representation of
evaluation parameters for the test dataset and all three folds of cross-validation (CV Fold 1- 3) along with their average
values

(a) CV Fold 1 (b) CV Fold 2 (c) CV Fold 3 (d) Test Dataset

Fig. 4: Confusion Matrices for Cross-Validation fold (a) 1 (b) 2 (c) 3 and (d) Test Dataset. The colorbar on the right of
each subplot indicates the number of data.

tation along with the plot of train and test accuracy. It could
be seen that, for good quality injection data, average accuracy
was achieved in the range of 98 − 99% (specificity) and
87% (sensitivity) for low quality injection data with overall
accuracy around 98%. To the best of author’s knowledge, use
of DL technique in identifying possible infiltrations is a new
approach and hence standard benchmarks to compare the
accuracy achieved were not readily available. Based on the
research works mentioned previously, it could be seen that,
in the study conducted by William et al., infiltrated injections
were classified with 75% accuracy, whereas in the other study
by Muzaffar et al., discrepancies in identifying infiltrated
injections were observed for 7 out of 40 data, yielding
17.5% error i.e. 82.5% accuracy, considering one of the
methods to be correct (Physician’s analysis/TAC analysis).
One constraint of the current form of the work is the limited
number of available data classifed as infiltrated, both during
training and testing. Thus, it is difficult to conclude how
well the network would perform with more other low quality
injection data. However, this work may interest in creating

an open access database of injection TACs which will allow
performing the training and testing on a large scale of dataset
and evaluate the feasibility of the implementation of NN in
true clinical sense.

IV. CONCLUSION
Deep learning techniques have been found to perform

extremely well in classification tasks in recent years. Use of
TACs obtained from sensors to identify and classify infiltra-
tions is also a very recent approach in PET dose infiltration
research. Combination of both these techniques is a novel
approach which may play a significant role in classifying
infiltrated injections or identifying good injections. With this
motive, a simple deep learning model has been fed with
sensor data by monitoring radioactive injections. The main
purpose of this study was to propose and investigate a new
approach in classifying infiltration. The future work aims
at training the network with higher number of infiltrated
dataset and explore more sophisticated models to achieve
better accuracy. Deep Convolutional Generative Adversar-
ial Networks (DCGAN) [17] can also be implemented to



generate a large dataset and test the accuracy. Additional
future work is also expected to include injection monitoring
information with three-dimensional PET data to make more
robust determinations of whether or not infiltration has
occurred and to what degree the images may have been
affected.
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